Genomics of Ciona intestinalis

- David N. Keys
 - dnkeys@lbl.gov
- Joint Genome Institute
 - DOE LBNL LLNL
 - Walnut Creek, CA
 - www.jgi.doe.gov

A Functional Genomics Approach to Developmental Genetics

Joint Genome Institute LBNL - LLNL - DOE

University of California Berkeley

Byung-in Lee Chris Detter Stephan Trong Syvia Ahn Dave Engle Naoe Harafuji Anna Di Gregorio

Orsalem Kahsai

Mike Levine

Maria Shin Dan Rokhsar Joann Wang Paul Richardson Trevor Hawkins

Mei Wang

Ciona intestinalis as an experimental organism

Basal Chordate
Genomic simplicity
Easy transgenics
Ectopic expression
Cis-regulation studies

Ciona intestinalis as an experimental organism

Basal Chordate
Genomic simplicity
Easy transgenics
Ectopic expression
Cis-regulation studies

Ciona intestinalis Larval body plan Ciona intestinalis Cerebral Vesicle/Brain Neural Tube Epidermis Muscle Notochord Gut

Adult Circulatory System

• Heart

- Simple single chamber
- Muscle & pericardium
- Asymmetrical looping
- Reversible
- Vascular System
 - Two major vessels
 - Open sinuses
- Blood
 - Eight known cells types

Genomic Simplicity

- ~160,000,000bp
- ~16,000 genes
- ~1 gene every 10kb
- ~500,000 ESTs
- Small gene families
 - Predates vertebrate duplication
 - Little redundancy
 - Easily identified orthologs

Experimental Tractability

Disadvantage
No true genetics
Advantages
Easy transgenics
Scorable phenotypes
Availability

Functional Genomics

- Studying large sets of genes in parallel rather than single genes
- Experimental, not observational or modeled
- Invent new hypothesis testing experiments
- Scale traditional hypothesis testing experiments to the entire genome

Large Scale Cis-Reg Hunts

•Primary Goal

- •Screen genomic libraries for *cis*-regulatory activity
- •Catalog a large number of functionally defined *cis*-regulatory elements

Secondary Goal

•Do some targeted developmental genetics along the way

Results

Catalog a large number of functionally defined *cis*-regulatory elements

- Design, implementation and results of a small scale pilot screen of random genomic DNA 11
- Design, implementation and results of an exhaustive screen of a medium size (250kb) genomic domain
- Design, implementation of an on going large scale screen of random genomic DNA

Themes to Keep in Mind

- Trade Offs
 - Number of characterized elements
 - Resolution of the characterizations
- Biases
 - Experimental biases
 - Experimenter's biases
 - Nature of enhancers vs detection methods

Technology to take *cis*-regulatory screening to the genomic level

Scale traditional hypothesis testing experiments to the entire genome

Drosophila transformation

- Collect naturally laid eggs
- Dechorionation
- Transform by single embryo microinjection
- Individually rear to 2nd generation
- Screen
- Total Time: month(s)

Traditional Enhancer Characterization

- Targeted
- Slow/Labor intensive
 - Building specific DNA constructs
 - Transforming into animals
 - Maintaining/screening animals

Standard *Ciona* Enhancer Characterization

- Targeted
- Slow/Labor intensive
 - Building specific DNA constructs
- Fast/Not labor intensive
 - Transforming into animals
 - Screening animals

Ciona Enhancer Screening

- Non-Targeted
- Fast/Not labor intensive
 - Transforming into animals
 - Screening animals
 - Building random DNA constructs
- Limiting factors
 - DNA preps (50-100ug)
 - Transformation window (single cell embryos)
 - Imaging

Pilot Genomic Screen

- Construct:
 - Ciona Forkhead basal promoter
 - lacZ marker detected by beta-Gal activity
 - Random genomic Sau3AI frags, 1.7kb average
- Prediction:
 - Will find cis-regulatory DNA
 - Gene density = 1 gene per 10kb. Therefore could find 1 enhancer every 10kb

First genomic screen

- 138 constructs
- 250kb screened
- 0.15% of the genome
- Results:
- 11 strong cis-regulatory elements
- At least 8 appear to be "real" enhancer elements
- One confirmed enhancer
- 1 detectable element every 23-31 kb
- 1 detectable every 2-3 genes.

• Prediction:

- Gene density = 1 gene per 10kb
- Therefore could find 1 enhancer every 10kb

• Results:

- 1 detectable element every 23-31 kb
- 1 detectable element every 2-3 genes

Potential Issues

- Promoter specificity
- Insulators & repressors
- Enhancer Polarity
- Promoter competition
- Enhancers fragmented during cloning
- Timing
- Insufficient detection strength

Ciona Enhancer Screening

- Non-Targeted
- Fast/Not labor intensive
 - Transforming into animals
 - Screening animals
 - Building random DNA constructs
- Limiting factors
 - DNA preps (50-100ug plasmid)
 - Transformation window (single cell embryos)
 - Imaging

Limiting Factors

- DNA preps (50-100ug plasmid)
 - Qiagen Midipreps up to 48 constructs per day
- Transformation window (single cell embryos)
 - 24 separate constructs per batch
- Imaging
 - Quality trade offs Tough decisions

Semi-targeted *Ciona* enhancer screen Build random libraries from limited regions

Target: Ciona Hox Complex

Predictions:

- Should be a single *Hox Complex*
- Should be a single domain
- Predictable expression patterns
 - Hox3 & Hox5 described by in situ
 (Branno & Di Lauro, Stazione Zoologica, Naples)

Ciona Hox Complex

- Should be a single *Hox Complex*
 - Correct
- Should be a single domain
 - Wrong, at least 4 separable domains
- Predictable expression patterns

Primary results

- 221 clones electroporated & passed
- 39 clones showed positive signal
- Range for enhancers actually found:
 - Likely Maximum 30
 - Likely real21
 - Minimum 17
 - Likely *Hox* 08

Ciona Hox Complex

- Should be a single *Hox* Complex
 - Correct
- Should be a single domain
 - Wrong, At least 4 separable domains
- Predictable expression patterns
 - Correct, Nested CNS
 - Unexpected, Nested Epidermis

Limiting Factors

- DNA preps (50-100ug plasmid)
 - Qiagen Midipreps up to 48 plasmids per day
- Transformation window (single cell embryos)
 - 24 separate constructs per batch
- Imaging
 - Quality trade offs Tough decisions

Full Genome Scale Up

Limiting Factors

- DNA preps (50-100ug plasmid)
 - Rolling Circle Amplification
- Transformation window (single cell embryos)
 - 24 separate constructs per batch
 - 480 constructs per week
- Imaging
 - Quality trade offs Tough decisions
 - Automation??

Scale Up

	VD 4 20106	A 11 1 1 1	Hamada i al 100 7 laba anatai a
•	XPA28186	All epidermis	Hypotheical 109.7 kDa protein
•	XPA28213	Tail Muscle	Serine/Threonine Kinase MASK
•	XPA28241	Ventral Mid Brain	Homolog to cDNA FLJ10540
•	XPA28134	Notochord	Low Sequence quality
•	XPA30404	Tail Muscle	RAR Related Steroid Receptor
•	XPA30769	Dorsal Brain, Neural Tube	e Arginine tRNA protein transferase
•	XPA30770	Muscle & Notochord	Proline Oxidase 1
•	XPA31107	Post Tail Epidermis	Wnt-2
•	XPA28831	All CSN & Epidermis	MORN motif containing
•	XPA28492	Single Cell in Brain	unknown but conserved protein
•	XPA28855	Post brain & Neural Tube	Protein kinase Ck2-beta
•	XPA29631	Neural Tube, All Gut	unknown but conserved protein
•	XPA25239	Unknown cells in head	MEC-8 like

Genomic Integration

- For most random constructs, 2 end runs will
 - Identify entire subcloned sequence
 - Identify both flanking ORFs
 - Tie into EST in situ project

Potential Issues

- Promoter specificity
- Insulators & repressors
- Enhancer Polarity
- Promoter competition
- Enhancers fragmented during cloning
- Timing
- Insufficient detection strength

